
PHYSICAL REVIEW E 67, 066606 ~2003!
Phonon avalanches in paramagnetic impurities with spinSÄ 1
2

Alexander A. Zabolotskii*
Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
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We theoretically study the dynamics of transverse-and-longitudinal acoustic waves propagating parallel to an
external magnetic field in a crystal containing ion impurities with an effective spinS5

1
2 . Corresponding

evolution equations describing the coherent pulse evolution are derived. These equations are used to study the
phonon avalanches arising due to decay of an initially unstable state of the spin systems for different geom-
etries of interaction. It is found that the coherent dynamics of acoustic pulses propagated in one direction is
described by a pair of integrable systems of evolution equations. The picosecond acoustic pulses governed by
these systems are ‘‘a few-cycle’’ pulses. By using a modified set of equations of the inverse scattering trans-
form, it is found that the strong interaction of three or two components of the acoustic waves with the spin
system is asymptotically described by the quasi-self-similar solutions. Physical applications of the obtained
results are discussed.

DOI: 10.1103/PhysRevE.67.066606 PACS number~s!: 41.20.Jb, 42.50.Md, 43.25.1y
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I. INTRODUCTION

Generation of picosecond acoustic pulses under lab
tory conditions@1,2# gave rise to a number of theoretic
papers dedicated to the interaction of such pulses with p
magnetic crystals. Evolution of ultrashort and a few-cy
pulses is described by complex systems of partial equat
as usual. In some cases, nonlinear coherent processes
ciated with such pulses can be described in the framewor
integrable evolution models. Application of the inverse sc
tering transform~IST! to such models in optical systems a
lowed one to obtain the most detailed information about
evolution of system@3,4#. For a few-cycle optical pulses, th
IST was applied to the reduced Maxwell-Bloch equations
Ref. @5# and to its generalization in Ref.@6# to find a set of
soliton solutions.

Evolution of picosecond acoustic pulses attracts a spe
attention because these pulses correspond to the le
;102721026 cm and to the highest pick power. The
properties are very perspective for diagnostics, nonlin
acousto-optical processes, and so on. Time scale of pico
ond acoustic pulses corresponds to a few-cycle pulses,
an approximation of the slow changing amplitudes a
phases cannot be applied.

As a physical realization of the model of acoustic puls
evolution, the crystal MgO containing Kramers’s double
impurities of the paramagnetic ions Co21 may be proposed
@7–9#. Theoretical papers devoted to the study of dynam
of the coherent acoustic pulses in paramagnetic withS
51/2 impurities and Zeeman splitting used as a rule an a
ogy with known optical two-level systems. Theory of th
quasimonochromatic had been developed, for instance
Ref. @10# and for a few cycle acoustic pulses in Ref.@11#. In
the later papers, approximations used by the authors are
valid for a few-cycle pulses. Another extreme case cons
ered in Ref.@11# corresponds to the extremely short dur
tions of the transverse acoustic pulses, i.e., durations
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pulses are much more shorter than a period of oscillat
However, this approximation requires unrealistic physi
conditions.

At the same time, the rich structure of evolution equatio
describing acoustic pulses evolution opens up the possib
of reducing them, for quite realistic approximations, to in
grable models when similar stringent conditions are impo
and also without them.

This paper is concerned with development in the theo
ical study of avalanches of acoustic phonons from stimula
emission by population-inverted spin system. Recently, a
lanches of resonant acoustic phonons are observed follow
population inversion of the Zeeman splitĒ(2E) doublet in
dilute ruby by selective optical pumping, see Refs.@13,14#,
and references therein. For description of observed time
pendence of levels populations, coherent equations of mo
for the lattice displacement and spin Bloch vector had b
used.

In this paper, we derive the evolution equations describ
propagation of the transverse-longitudinal acoustic wave
crystal containing ion impurities with an effective spin 1
for the different geometries of interaction. Using an appro
mation of one-directional propagation, we find integrable
ductions of these equations and develop a correspon
technique of the IST for two different geometries of intera
tion. The derived integrable models describe propagation
a few-cycle acoustic pulses without using a slow envelo
and low amplitude approximations. The IST technique
used to find solution for the leading front of solutions d
scribed by the avalanches of phonons. We also find tha
quasimonochromatic approximations, obtained systems
evolution equations become formally equivalent and redu
to integrable equations analogous to the Maxwell-Blo
equations for a two-level system containing a quadratic S
frequency shift.

II. PHYSICAL ONSET OF THE MODELS

Consider a system of ions with spinS51/2 implemented
in a crystal. Assume that an external constant and unifo
©2003 The American Physical Society06-1
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magnetic fieldB is directed along thez axis. We assume tha
a strain pulse propagates along thez axis as well. Zeeman
interaction of the magnetic momentm̂ (a) at a pointa contrib-
ute Ĥa52m̂ (a)B to a total Hamiltonian. Them̂ (a) compo-
nents can be expressed in terms of spinS(a)(ra) components
as m̂ j

(a)52(kmBgjkŜk
(a) , where ra is the radius vector of

spin at the pointa, mB is the Bohr magneton,gjk are the
components of the Lande tensor.

The Hamiltonian describing dynamics of the spins in
crystal takes the form

Ĥz5 (
a51

N

Ĥa
z5mB(

a
(
j ,k

BjgjkŜk
(a) . ~1!

Since the effective spin is 1/2, it can be decomposed
Pauli matrices:

Ŝx
a5

1

2 S 0 1

1 0D , Ŝy
a5

1

2 S 0 2 i

i 0 D , Ŝz
a5

1

2 S 1 0

0 21D .

~2!

Assume that thex,y,z coordinates along the principal Land
tensor axes coincide with the crystal symmetry axes. T
Lande tensor is then diagonal in a nondeformed unpertur
medium:gjk5gjk

(0)5gj j d jk , whered jk is the delta function.
The deformation of the crystal by an acoustic wave is
scribed by linear corrections to the Lande tensor@12#

gjk5gjk
(0)1(

p,q
S ]gjk

]Epq
D

0

Epq1•••, ~3!

whereEpq are the components of the strain tensor of crys
The derivatives are taken at the point of zero deformati
The strain tensor components can be expressed in term o
components of displacement vectorU5(Ux ,Uy ,Uz) as
@12#: Epq5 1

2 (]Up /]xq1]Uq /]xp).
Term containing the first degree of the strain tensorEpq

describes the spin-phonon interaction contribution to the
tal Hamiltonian

Ĥ int5(
a

(
j ,k,p,q

mBBjF jk,pqEpqŜk
(a) , ~4!

where F jk,pq5(]gjk /]Epq)0 are the spin-phonon couplin
constants@8#.

We use quasiclassical description of the spin-phonon
teraction, i.e., acoustic fields~components of the strain ten
sor! are classical but spins are treated as a quantum sys
Under such conditions, we derive the following contributi
to the Hamiltonians associated with the impurities:

Ĥs5E n\vBSzd
3r , ~5!

^Ĥ int&5(
a

(
j ,k,p,q

mBBjF jk,pqE Epq~r !^Ŝk
(a)~r !&d3r ,

~6!
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here and below in this paper indexg has the meanings
x,y,z. Sg5Tr$ŝgr̂%/2, r̂ is the density matrix,ŝg are the
Pauli matrices, i.e.,Sx5(r121r21)/2, Sy5 i (r122r21)/2,
Sz5(r112r22)/2, r i j are the components ofr̂. vB
5gmBB/\ is the frequency of the Zeeman splitting of th
Kramers’s doublets,B5uBu, and g5gxx5gyy5gzz. n(r )
5( jd(r2r j ) is the density of the paramagnetic impuritie
d(r ) is the delta-function. The integrals are taken over
crystal volume. Angular brackets denote that the Ham
tonian is averaged over the quantum states.

Wave dynamics of an acoustic wave in a crystal witho
anharmonicity is described by the Hamiltonian

Ĥa5
1

2E (
g5x,z

H pg
2

n0
1lgS ]Ug

]z D 2J d3r , ~7!

wheren0 is the mean crystal density,pg are the momentum
density components, associated with the dynamic displa
ments, andlg are the elements of the elastic module of
crystal @8#. We assume that the number of phonons is la
and that the classical description for acoustic fields dynam
is valid.

Evolution equation of an effective spin and field~compo-
nents of the strain tensor! are

i\
]r̂

]t
5@Ĥ,r̂ #, ~8!

]U

]t
5

]H

]p
,

]p

]t
52

]H

]U
, ~9!

where H5Ha1^Ĥ int&. We assume that the time scale
short enough to neglect relaxation effects for the acou
pulses and spins in crystal. We consider only on
dimensional evolution of the fields along thez axis.

In a common case, evolution equations are very comp
to be solved. Application of the symmetry of crystal and
particular choice of direction of the magnetic field can yie
the essential simplifications of equations. The two particu
cases of geometry of crystal and interaction are conside
here. In both these cases, we derive the integrable system
evolution equations, describing dynamics of the coheren
few-cycle acoustic pulses.

III. THREE-COMPONENT ACOUSTIC FIELD

In this section, we derive the evolution equations desc
ing propagation of the transverse-longitudinal acous
waves in a crystal containing ion impurities with an effecti
spin 1/2, assuming that a strain pulse propagates alongz
axis parallel to an external constant magnetic fieldB. Let one
of the axes of crystal having the fourth-order symmetry
directed along thez axis. Then, Hamiltonian of spin-phono
interaction takes the form

^Ĥ int&5E (
g

n\vB

g
f gEgzSgd3r , ~10!
6-2
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hereg5x,y,z, f g5(]gzz/]Egz) are the coupling constant
of the spin-phonon interaction@8#. Let f x5 f y due to as-
sumed symmetry restrictions. However,f y , f xÞ f z in com-
mon.

Using Eqs.~7!–~10!, we derive the following system o
evolution equations:

]2E gz

]t2
2vg

2 ]2E gz

]z2
5

nGg

n0

]2Sg

]z2
, ~11!

]Sx

]t
52S vB1

GzEzz

\ DSy1
GyEyz

\
Sz , ~12!

]Sy

]t
5S vB1

GzEzz

\ DSx2
GxExz

\
Sz , ~13!

]Sz

]t
5

1

\
~GxExzSy2GyEyzSx!, ~14!

whereGg5\vBf g /g, vg5Alg /n0. The following normal-
ized relation holds:

Sz
21Sx

21Sy
25~r111r22!

2[1. ~15!

To derive an integrable reduction of system~11!–~14!, we
assume that the phase velocities of the components of ac
tic wave to be equal:vx5vy5vz5v. This assumption may
be valid in crystal with central symmetric interaction, f
instance, in ion crystal of halogenide of alkaline metals@8#.

More often than not density of the paramagnetic impu
ties is relatively small in real crystal. Under this conditio
one can use an approximation of one-directional propaga
of waves. This approximation is similar to the approximati
used by the authors of Ref.@5# to derive the reduced
Maxwell-Bloch equation for a two-level optical system. Th
approximation formally corresponds to the approxim
equality ]z'2v21] t1O(e), here e is a small parameter
This means that normalized density of impurities in crysta
of the same smallness as the derivative]x̃5]z1v21] t of the
acoustic fieldEg amplitude. Then, we can replace the deriv
tives with respect toz on the right-hand side~RHS! of Eq.
~17! for the derivativesv21] t with an accuracyO(e2). Thus,
the condition of unidirectional pulse propagation is satisfi
and one obtains the following equations:

]E'

]x̃
5

nGx

2v2n0

]S'

]t
, ~16!

]Ezz

]x̃
5

nGz

2v2n0

]Sz

]t
, ~17!

whereS'5r21, E'5Exz1 iEyz .
This approximation does not impose any restrictions

duration of the acoustic pulses and can be used for the p
duration;vB

21 , i.e., for a few-cycle pulses.
Then from Eqs.~12!–~17!, one can derive the simple re

lation
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uE'u21S Ezz1
vB\

Gz
D 2

5U0
2~ t !. ~18!

Here a real functionU0(t) is determined by the boundar
conditions.

System~12!–~17! is the integrable system of evolutio
equations. Using Eq.~23!, we rewrite this system in the form

]xE5 ib0US'2 iESz , ~19!

]tS'5 ib0US'2 iESz , ~20!

]tSz5
i

2
~ES'

* 2E* S'!, ~21!

whereU2(x,t)512uE(t,x)u2 and

E5
E'

U0~ t !
, x5x̃

nG'
2

2\n0v2
, t5E

0

tU0~ t8!G'

\
dt8,

b05
Gi

G'

.

IV. THE ISTM EQUATIONS FOR THREE-COMPONENT
ACOUSTIC WAVES

Let us solve the problem for the fast enough decay
potentialE(t,x)→0 and its derivatives with respect tot for
t→6`. System~19!–~21! can be presented as the comp
ibility condition of the following pair of linear systems:

]tF5S 2 ilU ~l1b!E

2lE* ilU DF, ~22!

]xF5
1

~2l1b0! S ilSz b0~l1b!S'

2b0lS'
* 2 ilSz

DF, ~23!

where l is a spectral parameter,U21EE* 51, b5 1
2 (b0

2b0
21), b0Þ0. Note that the spectral problem~22! differs

from the related problems~studied here! associated with the
solution of the Heisenberg and Landau-Lifshitz equations
equations of Raman scattering, see Refs.@15–17#, by its
symmetry properties. Therefore, the IST apparatus mus
developed for this and models presented below by tak
into account their specifics. We present here only main st

Spectral problem~22! possess the involution properties

F5M̂F~l* !* M̂ 21, ~24!

where

M̂5S 0 ~l1b!/l

21 0 D . ~25!

Introduce the Jost functionsC6, the solutions of Eq.~22!
with the asymptotic:

C65exp~2 ils3t!, t→6`. ~26!
6-3
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The symmetry property~24! corresponds to the following
matrix form of the Jost functions:

C65S c1
6

2c2
6*

l1b

l

c2
6 c1

6*
D . ~27!

These solutions are related by the scattering matrixT̂ by the
relation

C25C1T̂, ~28!

which can be chosen in the form

T̂5S a* b~l1b!/l

2b* a D . ~29!

The Jost functions have standard analytical properties.
function a(l) is holomorphic in the upper half planel,
where its zeros correspond to the soliton solutions@18#.

Let us substitute the following integral representation
the Jost functions:

C1~t!5e2 ils3t

1E
2`

t S lK1~t,s! ~l1b!K2~t,s!

2lK2* ~t,s! lK1* ~t,s!
D e2 ils3sds

~30!

into Eq. ~28! and integrating from2` to ` over l with the
weight e2 ily(2pl)21. As a result, we obtain the following
Marchenko-type equations:

K2* ~t,y!5F0~t1y!1 i E
2`

t

K1~t,s!]yF0~s1y!ds, y<t

~31!

K1* ~t,y!52E
2`

t

K2~t,s!~b1 i ]y!F0~s1y!ds, y<t.

~32!

Where

F0~y!5E
C

b~x!

a~x!
e2 ily

dl

2pl
, ~33!

C is the contour along the real axis and that passes abov
poles in the upper half plane of the complex plane ofl. a,b
consists a part of the spectral data, determined, in comm
by the initial-boundary conditions.

Substitute function~30! in the spectral problem~22!, we
derive the relation between potential and the kernelsK1,2 in
the form

E~t!5
2@12 iK 1~t,t!#K2* ~t,t!

@11 iK 1* ~t,t!#@12 iK 1~t,t!#1uK2~t,t!u2
.

~34!
06660
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Let us study the dynamics of the acoustic phonons a
lanche arising for an initially completely inverted spin sy
tem and a small initial acoustical noise. The initial-bounda
conditions for such state can be written in the followin
form:

uE~t,0!u5const!1, Sz~2`,x!51, S'~2`,x!50,
~35!

where the acoustical noise is modeled byE(t,0). For this
initial-boundary conditions, only the real spectrum giv
contribution to solution. The dependence of the scatter
coefficientR5b/a by x can be found by means of a sta
dard way@3#. For Eq.~35!, we find

R~x!5
b~x;l!

a~x;l!
5r0expS 22ixl

2l1b0
D . ~36!

Next we have to substitute the kernelF0(y,x) and its deriva-
tive

i ]yF0~t1y;x!

5
r0

2pEC 1

e2 il(t1y)1 ixb0/2l1 i [( t1y)b0]/22 ixdl,

~37!

F0* ~t1y;x!

5
r0

2pEC 2

eim(t1y)1 ixb0/2m1 i [( t1y)b0]/22 ix
dm

m2
b0

2

~38!

in the Marchenko equations~31! and ~32!. Then
change integration variablesl5A@xb0/2(t1y)#l̃ (m
5A@xb0/2(t1y)#m̃) and deform the contours of integra
tions C1 (C2) in such a way that they bend around the po
l̃5 i (m̃52 i ) in the positive ~negative! directions. The
main contributions to the integrals arise from the expone
therefore, we can approximately replaceAy1t'A2t,
As1t'A2t, 11O(b0xt)21'1 in the exponential factors
Let us introduce the new functions

Q1,2~t!5E
2`

t Ab0x

4At
K1,2~t,s!expFA2xb0~t1s!1 is

b0

2 Gds.

~39!

Equations~31! and ~32! become algebraic ones forQ1,2(t)
and can be easily solved.

Using these solutions one easily obtains the kernelsK1,2
and using them, we find the solution for the acoustic fie
amplitude

E~t,x!5
2Zr0eu1 i tb0/2

Z21ur0u2e2u F11OS 1

Ax
D G , ~40!

where
6-4
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u52Ab0xt, Z512
ur0

2u
4

e2u.

This solution describes the first pulse of an infinite s
quences of nonlinear pulsations with decaying amplitu
and increasing widths. Relaxation, diffraction, inhomoge
ity of initial inversion additionally reduce amplitudes of th
second and following pulses in comparison with that of
first one. Therefore, as a rule contributions of these pu
except the first one can be neglected. Solution~40! up to the
linear phase is approximately self-similar, i.e., this solut
depends onu with the accuracyO(1/Ax). In Ref. @13# a
known solution to the Maxwell-Bloch equations was us
for description of the phonon avalanche for the transve
acoustic waves. Analogy of the avalanche and optical su
radiance effect arising in initially inverted two-level syste
was used. An evolution of transverse-and-longitudinal aco
tic wave described by model~19!–~21! may significantly dif-
fer from that of a transverse field, see Ref.@13#. For instance,
an amplitude of field in the avalanche regime described
the solution of the Maxwell-Bloch system increases withx
as;AxS0, whereS0 is the initial density of inverted spins
On the other hand, the maximum value of the transve
and-longitudinal acoustic wave is restricted byuU0u. Leading
pulses of the trains of pulses corresponding to both wa
are shown in Fig. 1. The dashed line shows numerical ca
lation of the amplitude of the leading pulse of transve
field obtained by the numerical solution of the Maxwe
Bloch equations. Dependence ofE versus variablet de-
scribed by solution~40! is depicted in Fig. 1 by the solid
line. Parameters of this wave are chosen such that the m
mum of its amplitude equals toU0. Deriving solution~40!,
we neglect terms havingO(1/Ax). It may be shown that
term of such order yields the nonlinear phase modulat
i.e., nonlinear rotation of the pulse polarization with the c
efficient;b/Ax. This rotation is a consequence of an asy
metry of the interaction arising from the deviation ofb0
from 1.

V. TWO-PARTIAL ACOUSTIC FIELD

Consider another geometry of interaction, correspond
to a physical situation then the contribution of the compon
of strain tensorEyz may be neglected. This means that o

FIG. 1. Dependence ofE15Ee2 ib0t/2 versust. Solution~40! is
shown by the solid line. Numerical solution of the Maxwell-Bloc
equations normalized to unity is shown by the dashed line.
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may take into account only dynamics of acoustic wave
scribed by the components of strain tensorExz andEzz. Such
a situation can be realized in layered crystals in which
spin coupling withEyz is relatively small. On the other hand
it is experimentally observed that in some crystals a gro
velocity of one of the transverse component of acous
wave, e.g.vy may significantly differ from the group veloci
ties of another transverse-and-longitudinal components, s
that vx'vz . As a consequence, the period of interaction
the y component of acoustic wave with thex andz compo-
nents is relatively short and this interaction can be neglec
if one investigates only the dynamic of thex andz compo-
nents of the acoustic field. More often than not such dyna
ics may be associated with an evolution in a thin layer
with surface waves@10#. The simplest surface waves are th
two-partial Rayleigh waves or the surface shift waves@9#,
which consist of one transverse-and-longitudinal compone
of acoustic waves@9#.

Using above assumptions, we restrict our investigation
dynamics of one transverse-and-longitudinal component
the acoustic waves:Exz , Ezz. In this case onlyBz ,Bx (z and
x components ofB) yield contributions to interaction. As
sume that the vector of the magnetic fieldB lies in thexz
plane. Under above assumptions spin-photon interactio
characterized by a following set of the coupling coefficien

f 15 (
j 5x,z

Bjgjz,xzB
21, f 25 (

j 5x,z
Bjgjz,zzB

21,

f 35 (
j 5x,z

Bjgjx,xzB
21, f 45 (

j 5x,z
Bjgjx,zzB

21. ~41!

The resulting HamiltoniansĤs and Ĥ int take the forms

Ĥs5E (
a

n\vBŜz
(a)d3r , ~42!

Ĥ int5E (
a

n\vB

g
$~ f 1Ezz1 f 2Exz!Ŝz

(a)

1~ f 3Exz1 f 4Ezz!Ŝx
(a)%d3r . ~43!

Introduce the effective transverse~or quasitransverse! acous-
tic field, i.e., linear combination of components of the stra
tensor coupled in Hamiltonian with the spin componentSx ,

W5Exz1
f 4

f 3
Ezz. ~44!

Then, we are able to rewrite sum of Hamiltonians~42! and
~43! in the form

Ĥs1Ĥ int5E n\vB

g
@s3~g1 fEzz!1 f 3n̂•W#d3r , ~45!

wheref 5 f 22 f 1f 4 / f 3. The tensor coefficient before the la
term on the RHS of Eq.~45! corresponds to the effectiv
magnetic momentmBn̂,
6-5
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n̂5S a 1

1 2aD , ~46!

wherea5 f 1 / f 3 is an analog of the permanent dipole m
mentum known in the nonlinear optics, see, e.g., in Ref.@6#.
We assume thata50. Such a situation can be realized
electron-phonon couplings in a lower state and an upper s
of two-level system are identical. Case off 50 corresponds
to a model that is formally equivalent to the integrable ge
eralization of the reduced Maxwell-Bloch equations fou
recently by the authors of Ref.@6#.

Using Eqs.~8! and~45!, one derives the following Bloch
equations for the effective two-level system:

]

]t
Sz5

f 3

\
WSy ,

]

]t
Sy5S vB1

f

\
EzzDSx2

f 3

\
WSz , ~47!

]

]t
Sx52S vB1

f

\
EzzDSy ,

here, as in the preceding sectionSg5Tr Ŝg
(a)r̂/2, g5x,y,z.

Next we have to derive evolution equations for the fie
W,Ezz. For this aim, we assume that the phase veloci
corresponding to the components of deformationsUx andUz
are equal to each other. Using equations forUx ,Uz , differ-
entiating them with respect toz and using the definition o
the strain tensor, we find that the classical fields obey
following evolution equations:

]2W
]t2

2v1
2 ]2W

]z2
5

2n\vBf 3

gn0

]2Sx

]z2
, ~48!

]2E zz

]t2
2v2

2 ]2E zz

]z2
5

2n\vBf

gn0

]2Sz

]z2
, ~49!

wherev15v25Alx /n0.
To derive integrable reductions of system~47!, ~48!, and

~49!, we have to impose a set of restrictions to the phys
parameters and time scale. We already used the assump
-

in
he
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that the phase velocities of the fields are equal to each o
One can use the same approximation of the one-directio
propagation of wave, i.e.,]z'2v21] t1O(e), wheree is a
small parameter. Introducing the variable]x̃5]z1v21] t ,
we obtain the following reduced evolution equations:

]W
]x̃

52
n\vBf f 3

v2n0g
S \vB

f
1EzzDSy , ~50!

]Ezz

]x̃
5

n\vBf f 3

v2n0g
WSy . ~51!

System~47!, ~50!, and ~51! is the second integrable syste
of evolution equations. From these equations the follow
integral can be derived:

W 21S Ezz1
vB\

f D 2

5U 0
2~ t !. ~52!

Using Eq.~52!, we are able to present integrable system
equations~47!, ~50!, and~51! in the dimensionless form

]xE52b1USy , ~53!

]tSy5b1USx2ESz , ~54!

]tSx52b1USy , ~55!

]tSz5ESy . ~56!

Where

E~x,t!5
W~x,t!

U0~ t !
, U~x,t!21E~x,t!251,

x5x̃
nvBf 3

2

gn0v2
, t5

f 3

\ E0

t

U0~ t8!dt8, b15
f

f 3
.

Lax representation of system~53!–~56! has the following
form:

]tF5S 2 ilU ~l1b!E
2~l2b!E ilU DF, ~57!
]xF5
b1

b1
224l2 S 2 ilSz ~l1b!~b1Sx22ilSy!

~b2l!~2ilSy1b1Sx! ilSz
DF, ~58!
whereU 21E 251, b5 1
2 Ab1

221, l is the spectral param
eter.

We will solve the problem on the entire axis fort for the
sufficiently fast decaying potential:E(t,x)→0, t→6` and
its derivatives. The spin system is assumed to be in an
tially inverted state and asymptotically must tend to t
i-

stable ground state:Sz(t,x)521, t→`.
We consider only the case ofubu,1. For this case, the

involution property~27! is described by the matrix

M̂5S 0 1

21 0D . ~59!
6-6
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The Jost functions corresponding to decaying fort→6`
potential and its derivatives and ground stateE(t,0)50 pos-
sess the following asymptotic:

F65exp~2 ils3t!, t→6`, ~60!

and may be written as

F65S f1
6 2f2

6*

f2
6 f1

6* D .
an

c
ju

e

06660
These functions are related by the scattering matrixT̂ by the
relation

F25F1T̂, ~61!

where

T̂5S A* B
2B* AD . ~62!

Using the following presentation of the Jost functions
F1~t!5e2 ils3t1E
2`

t S lK1~t,s! ~l1b!K2~t,s!

2~l2b!K2* ~t,s! lK1* ~t,s!
D e2 ils3sds, ~63!
g

for
bed

ave

tic
we derive from Eq.~63! and ~57!

K2~t,t!@11U~t!#5E~t!@12 iK1~t,t!#. ~64!

Using Eq.~64! and relationU 21E 251, we obtain

E~t!5
2@12 iK1~t,t!#K2* ~t,t!

@11 iK1* ~t,t!#@12 iK1~t,t!#1uK2~t,t!u2
.

~65!

Substituting the components of function~32! in Eq. ~30! and
integrating with the following weights:

e2 ily@2p~l2b!#21, e2 ily~2pl!21,

we find the Marchenko equations (y<t)

K2* ~t,y!5Fb~t1y!1 i E
2`

t

K1~t,s!]yFb~s1y!ds,

~66!

K1* ~t,y!5E
2`

t

K2~t,s!~b2 i ]y!F0~s1y!ds, ~67!

where

Fb~y!5E
C1

B~x!

A~x!

e2 ily

2p~l2b!
dl, ~68!

and C1 is the contour that passes along the real axis
above all poles in the upper half plane.F05Fb(b50). Con-
dition of reality of E imposes some restrictions to the spe
tral data, e.g., poles may appear only in anticomplex con
gated pairs:l152l2* .

Let us consider the initial-boundary conditions corr
sponding to the initially inverted spin system:

uE~t,0!u5const!1, Sz~2`,x!51, Sx~2`,x!50,
~69!
d

-
-

-

that is the same as Eq.~35!.
Using problem~57!, we find

r~0;l!5r05
B~0;l!

A~0;l!
'

2l

2 E
2`

`

E~t,0!e2iltdt. ~70!

For E(t,0)5const, the scattering coefficientr0 does not de-
pend onl. The dependencer(x), we find using Eq.~58!

r~x!5r0expS 2ib1xl

b1
224l2D . ~71!

Using the above approximations, we find the followin
approximate solution to system~53!–~56!:

E~t,x!5E2~u!F11OS 1

Ax
D G , ~72!

where

E2~u!5
2Zr0eu

Z21ur0u2e2u
, u52Ab0xt, Z512

ur0
2u

4
e2u.

As it follows from obtained solution~72! for large enoughx
the amplitudes acoustic fields associated with avalanches
these two different geometries of interactions are descri
asymptotically by the close solutions. Indeed, solution~72!
under approximations used here differs from Eq.~40! only
by the phase factor. Differences between these solutions h
an order ofx21/2.

Solution ~72! is depicted in Fig. 2~solid line! together
with the numerical solution of evolution equations~53!–~56!
~dashed line!. Numerical analysis shows that the asympto
6-7
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solution ~72! gives a good approximation for the leadin
front of the phonons avalanche for2 lnur0u@1.

VI. THE QUASIMONOCHROMATIC APPROXIMATION

Here, we find the solution for the models that describe
dynamics of acoustic pulses of the order of or shorter t
vB

21 . in duration by using the ISTM. These models are
most general integrable reduction of the original syste
~11!–~14! and ~47!–~49!. However, it is also of interest to
find other integrable reductions of this model that arise un
additional assumptions. In general, these models are eas
solve and analyze. On the other hand, soliton solutions
other coherent structures arise in these models from the
ance between dispersion, cross modulation, nonlinear m
ing, etc. The corresponding terms in the equations simu
the real physical effects that show up at various field am
tudes and degrees of spin reversal in our problem. There
it is important to determine the conditions when these
fects, while being mutually balanced, give rise to solito
and other coherent structures. Studying these models is
useful for solving similar nonintegrable models because s
ton and other stable solutions of integrable models can
used as a zero approximation in constructing the perturba
theory. As above, we use the condition of equal group
locities: v'5v i . Let us now pass to quasimonochroma
fields in system~11!–~14!:

E'G'

\vB
5Ẽexp@ i ~vt2kz!#, ~73!

S'5Rexp@ i ~vBt2kz!#, uvB2vu!vB . ~74!

We use the slow-envelope approximation, which requires
satisfaction of the inequalities

U]Ẽ

]t
U!vBuẼu, U]Ẽ

]z
U!kuẼu,

U]R

]t U!vBuRu, U]R

]zU!kuRu. ~75!

Let us change to the variables

FIG. 2. Dependence ofE2 versusu. Solution~72! is shown by
the solid line. The numerical solution of system~53!–~56! is de-
picted by the dashed line.
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z̃5z
knG'

2

v2n0\vB

, t̃5S t2
z

v DvB ,

and denote

U5
EiG'

\vB
, Ẽ5

E'G'

\vB
, n05

vB2v

2vB
.

To simplify the description of the dynamics of the longitud
nal field Ei , we use the condition of unidirectional fiel
propagation. Given these approximations and changes,
~11! take the form

]Ẽ

] z̃
5 iR, ~76!

]U

] z̃
52

b0

2

]S3

]t̃
. ~77!

We find from Eqs.~76!, ~77!, and~14! that the fieldsU andE
are related by

U~ t̃,z̃!52
b0

4
uẼ~ t̃,z̃!u21U1~ t̃ !. ~78!

Here, U1( t̃) is determined by the boundary condition
Without loss of generality, we chooseU1[0. Using equality
~78!, we reduce the Bloch equations~12!–~14! to

]R

]t̃
5 i S 2n02

b0
2

4
UẼU2DR1 iẼS3 , ~79!

]S3

]t̃
5

i

2
~Ẽ* S'2ẼS'

* !. ~80!

As a result, we obtain the system of equations~69!, ~72!,
and~73!, which is formally identical to our integrable syste
suggested previously@19#. This system was used to describ
the generation and evolution of ultrashort electromagn
light pulses in two-level optical media in the quasimonoch
matic approximation. In Ref.@20#, we found soliton and pe-
riodic solutions for this model. The Lax representations
the integrable system~76!, ~79!, and~80! are

]t̃F5S 2 il22 i
b1

4
uẼ2u gẼ

g̃Ẽ* il21
b1

4
uẼ2u

D F[L2F,

~81!

] z̃F5
1

4~l21n0!
S 2 iS3 2gR

2g̃R* iS3
D F[A2F, ~82!

where
6-8
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g5
1

2
~b1l1 iA11b1

2n0!,

g̃52g* , b15
b0

2

2
.

Using the same quasimonochromatic approximations
fields

Wf 3

\vB
5W̃exp@ i ~vt2kz!#1W̃* exp@2 i ~vt2kz!#,

~83!

Sx1 iSy5S̃exp@ i ~vBt2kz!#, uvB2vu!vB , ~84!

where

U]W̃

]t
U!vBuW̃u, U]W̃

]z
U!kuW̃u,

U]S̃

]t
U!vBuW̃u, U]S̃

]z
U!kuW̃u, ~85!

we derive from Eq.~47!–~49!, the relation

f 3Ezz

\vB
52

f

2 f 3
uW̃u21U2~ t̃ !. ~86!

Then, using the slow envelopes and the rotating wave
proximation to system~47!–~49! and taking into account Eq
~86!, we derive a system, which differs from Eqs.~76!, ~79!,
and ~80! only by changing of the notation.

It can be easily shown that using the above quasimo
chromatic approximations one derives the equations that
equivalent to system~76!, ~79!, and ~80! starting from sys-
tems~19!–~21! and ~53!–~56!.

Some information on the field dynamics can be obtain
by analyzing the structure of this Lax pair and by compar
it with a similar Lax pair in Ref.@20#. The contribution of the
longitudinal acoustic field shows up in the presence of te
with the coefficientb1 in the matricesL2 and A2. As a
result, for soliton and other solutions, including the longi
dinal field manifests itself in a change of the pulse shape
in the appearance of a nonlinear phase addition of the o
of ib1*0

t uẼu2dt̃. Since the contribution of the longitudina
field for a small ratioGi /G';e is of the order ofe2, its
contribution to the dynamics of the transverse field in su
media can be disregarded, which is attributabed to the qu
monochromatic approximation used above. In the case
ultrashort pulses considered above, i.e., for pulsestp;vB

21

in duration, the contribution of the longitudinal field is th
same in order of magnitude as that of the transverse fi
This difference stems from the fact that Eqs.~76! and ~77!
describe the long-wave–short-wave resonance, which
much less effective than the short-wave resonance in the
considered in previous sections of this paper. We can c
clude that the effects related to the coupling of transve
and-longitudinal sound pulses are much more pronoun
06660
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for ultrashort pulses than those in the quasimonochrom
limit. In deriving system~76!, ~79!, and ~80!, we assumed
the transverse field to produce rapid oscillations betw
Zeeman levels. In this case, the nonlinear effects are ma
attributabed to the interaction of the transverse field with
two-level medium. Consider the other extreme case wh
there are virtually no transitions between levels; i.e.,
change inS3 can be ignored. Applying the approximation
used above, we obtain the following additional reduction
Eqs.~76!, ~79!, and~80!:

]Ẽ

] z̃
5 iR, ~87!

]R

]t̃
5 i S 2n02

b1

2
uẼu2DR1 iẼ. ~88!

This integrable system of equations can be reduced to
Thirring model by a simple gauge transformation. It also h
stable soliton and other coherent solutions and can be
lyzed in detail in terms of the ISTM~see, e.g., Ref.@21#!. In
this case, the existence of soliton and other coherent st
tures is attributabed to the nonlinear phase modulation p
duced by the longitudinal field. The transverse field ma
fests itself in establishing a coherent coupling between
field and the two-level medium in the linear limit.

VII. CONCLUSION

We find the integrable systems of evolution equations
scribing dynamics of acoustic fields in paramagnetic w
spin 1/2 for two different geometries of interactio
Asymptotic solutions to these different systems correspo
ing to the phonon avalanches consist of the infinite trains
pulses. We find that the forms of the leading pulses te
asymptotically to the same form independently on the geo
etry of interaction. It is worth emphasizing that integrabili
of these models allows one to investigate the nonlinear s
of coherent evolution for more realistic physical paramet
of sound pulses than in Ref.@11# and in related theoretica
studies.

Estimate parameters of fields and medium required
observation of formation of the acoustic picosecond puls
Consider, for instance, crystal of MgO containing param
netic impurities Fe21 at the temperatureT54 K. Let the
magnetic field strength be such that the Zeeman splittin
vB51012 s21. This corresponds to the realistic strength
the magnetic field. Coefficients of the medium are t
following: @8#, Gg;10213 erg, n;1019 cm23, n0;324
g/cm3, v'52103105 cm/s, lg'53105210•1011

din/cm2. Under such conditions the peak intensity of t
acoustic pulse can beI;108 V/cm2 and duration can betp
;10 ps.

Conditions of phonons avalanche observation are
scribed in Refs.@13,14#. We demonstrate here that analogo
avalanches can be observed even in the more common c
of transverse-and-longitudinal acoustic waves and for a f
cycle pulses. It is known that for picosecond time scaletp in
6-9
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some crystals losses associated with sound pulses prop
tions are proportional totp

22 . For quasimonochromatic
pulses with the carrying frequencyvB durations are at leas
of the order of 0.1vB

21 . Therefore, for the same duration
losses corresponding to a few-cycle pulses are at least
times less than that of a quasimonochromatic pulse.

Evolution equations close to those studied above m
arise in another physical situation. Consider, for instan
phonon-assisted spin-flip transitions between the Zee
sublevels for two different mesoscopic systems: GaAs qu
tum dots~localized states! and the two-dimensional electro
system in the quantum Hall regime for filling factor 1~delo-
calized states!. In Ref. @22#, it is shown that part of the
Hamiltonian describing the spin-phonon interaction with t
strain waves can be written in a form close to presented
the present paper. Following the above assumptions one
s

e

, J

y,

06660
ga-

00

y
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derive the evolution equations close to those studied h
The spin flip in such systems can be described by the sol
solution forSz(t,x), which can be derived from the March
enko equations constructed by the way described in
paper.
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